Amazigh Converter based on WordprocessingML

Fadoua Ataa Allah Jamal Frain

CEISIC, IRCAM, Morocco
{ataaallah, frain}@ ircam.ma

Abstract

Since the creation of the Royal Institute of Amazighiture, the Amazigh language is undergoing a E®ad standardization and
integration into information and communication teglogies. This process is passing through seveages, after the writing system
stabilization, the encoding stage and the developrokappropriate standards for the keyboard |lgythe stage of computational
linguistics is undertaking. Thus, in the aim to edkie Amazigh cultural heritage, many convertellewéng the Tifinaghe ANSI-
Unicode transition and Arabic-Latin-Tifinaghe trhtesation, have been developed. However, theseaters could not assure the
file layout and the processing of all documentgtgalo overcome these limitations, the new WordpssingML technology has
been used.

Keywords. Amazigh language, transcoding, transliteration, dipoocessingML technology, ANSI, Unicode, Tifinaghe,
Arabic and Latin scripts.

1. Introduction + The difficulty of processing headers, footers,
footnotes at the bottom of pages.
Crash or slow processing of long files.
To overcome these limitations, we have decided to
'develop a new converter based on WordProcessingML
technology that will handle files particularly Wofarmat
in more efficient and simpler way than interob API
technology. Furthermore, we propose new code for
processing files’ header, footer and footnote.
The remainder of this paper consists of four sastidn
ection 2, we present a historical overview and the
writing systems of the Amazigh language. Then, we
Mntroduce, in Section 3, the WordprocessingML
technology, especially the needed structures. lyinal
before to conclude in Section 5, we describe, tiSe 4,
the elaborated tool.

The integration of the Amazigh language in Inforimat
Technology and Communication (ICT) has become a
necessity to promote the Amazigh language. However
this integration was confronted by several chakeng
including those related to standardization and uaqgg
planning.

To let the Amazigh language supporting and congyin
knowledge, firstly, a writing form and an alphabeti
system have been established. Secondly, based on &
linguistic description of the most widely spokenigties
of the Amazigh language, a spelling system has bee
stabilized (Ameuet al., 2004). Then, a stage of character
encoding has been undertaken. However, the diffidal
these steps is to achieve generic solutions irtdiniime
to allow the integration of Amazigh into the Moracc
educational system in 2003. Thus, the native Antazig
writing system encoding went through two steps: ANS
then Unicode encoding (Moukhlis and Ouniam, 2006). . .

Promoting Amazigh culture involves the maintenance 2.1. Amazigh language history
and preservation of literary heritage and the Amazigh is the native language of North Africaislalso
dissemination of writing Tifinaghe on all media. Ts known by the name of "Berber" and the local name
end, Amazigh converters have been developed: "Tamazight". This language is present from Morotzo
« A command line transcoder for ANSI-Unicode Egypt passing through Algeria, Tunisia, Niger andliM

encodage and an Arabic-Latin-Tifinaghe It is spoken by tens of millions of people as non-

transliterator, providing only the treatment oft.tx standardized dialects.

files (Ataa Allah and Boulaknadel, 2011). In Morocco, there are three main varieties of the
+ A transcoder and transliterator with graphical Amazigh language: Tarifite in the North; Tamazigt

interfaces based on interob API for processing thethe Center, the Middle Atlas and a part of Higha&fland

files .txt, .rtf, .doc and .docx (Ataa Allakt al., Tachelhite in the South, South-west of High Atldse

2013). Anti-Atlas and Sous. These varieties were primarily

However, all these converters have known technicalemployed in oral communication. However, in order t
limitations that can be summarized in the following preserve the Amazigh language, it is importantamdit
points: from orality to literacy and to upgrade the langeiaiipen
« Complexity of an automatic identification of theeds to integrate the Amazigh language into the infoiarat

fonts, which is necessary required for transcoding and communication technologies.

2. Amazigh language

Tifinaghe script from ANSI to Unicode, especially i Although the Amazigh language was primarily an oral
multilingual documents. tradition, the Amazigh language has, since antjguis

+ Simple search without combination of free content own writing system called "Libyco-Berber" (Tifinaglin
criteria. Amazigh). This system dates back more than 40 destu

e The loss of the document format. (Hachid, 2000; Skounti etl., 2003). However, the

appearance form of its signs has been undergoinyy ma

modifications: since its inception "the Libyan"ttee neo-
Tifinaghe in the late sixties and Tifinaghe IRCANI-i
2001 (Ameuret al., 2004).

2.2. Tifinaghe-lRCAM graphical system

Since February, 1 2003, Tifinaghe-IRCAM has
become the official graphic system for writing Anggzin
Morocco (Ameuret al., 2004). This system contains:

e 27 consonants including, X, X, A, E, X, K, R,
O, A H, X, E,I,W,C, I, 0,Q, YW, 0,0+,
E, X, %;

e 2 semi-consonants:andl;

* 4 vowels: three full vowels, €, § and neutral vowel
(or schwa)s which has a rather special status in
Amazigh phonology.

No particular punctuation is known for Tifinaghe.

IRCAM has recommended the use of the international

symbols.

2.3. Amazigh encoding

To allow the Amazigh people to communicate in their
own language and follow at the same time the
technological evolution, it is necessary to ensungide
diffusion and a linguistic analysis of digital doceant
content. Thus, a digital transcription system hagnb
created, and several efforts have been undertatien
encode Tifinaghe in Unicode/ISO 106461 (Moukhligl an
Ouniam, 2006). Nevertheless, this process has taken
long time than what the integration of the Amazigh
language into the Moroccan education system wa
allowed. To resolve this problem, the ANSI encoding
supported by fonts has been used (for more dethisit
Tifinaghe ANSI and Unicode encoding the reader car
refer to (Ataa Allaket al., 2013).

3. WordprocessingM L

Unlike its predecessors, the highly anticipated rvBoft
Office 2007document format ‘OpenXML’, is a fully ep
standard. It is based on open specifications aed apen
standards like ZIP, XML, XMLSchema, PNG, ..., which
make it particularly interesting for developerscsirthese

standards are supported by most technologies ssch a°

.NET, Java, PHP, and C. Moreover, OpenXML adopgs th
separation concept of content and presentatior kiad

of data (text, image, multimedia, etc.) is stored
independently of the styles and presentation inébion.

Fig. 1: Open XML specification

Furthermore based on WordprocessingML and XML
technologies, Word file creation and manipulati@cdme

easier and do not require the use of Interop, whielns
that the user does not need to install the Wortiveoé to
manipulate the document.

In the remaining of this section, we describe the
WordML document structure, and explain the operatio
of reading, writing and updating a Word document

3.1. Presentation

The introduction of XML was marked as a native fatm
of Word documents. Any Word document can be opened
in Word and saved as XML. This new format, called
WordML, offers many opportunities to generate and
process Word documents through the WordprocessingML
markup.

The WordML package has the form of a zip archive
containing a collection of compressed files, wheaeh
file is a part of the package. To display theirtenits, the
.docx files can be renamed by .zip, or use Ziptyttb
open them.

(=L

= 1) sample A =
=) docProps J Iy e
= app.xml Caller ; Police | Paragraphe| Si
core. sl 5 J T i
=) word Presse-,., [
) theme
theme.xml
210 ek | @EAZ ACCE T EEMS, CIAA T CLAN, CoAte
document sl relks

d el 2 o® Ellz 30 B SCR5Y) AATIE, CRE CR.l
CLment. Xmi

fontT able. xml
zettings. sml
styles uml
webSettings. xml
B _rels

Tels

[Content_Types]xml

1164 £¥'Ce £%: LY, SBEH0 taLXE1 Y +oC
| FTTER| WRE M ECR.IE1 M FEQE | ZRCR A

SCALEC. S0 1372 | LIEF7.E A 1700

@ FCKET 1@, Tal ¥ et llph A LIS . 21308
FHFael, 12HF 1 1 1368 ZCEERC, LR R
I HHCO oA Hle HEAT | SCAET @ CRIME 1

B o

Fig. 2: WordprocessingML structure

To be effectual, a document must contain at Idaest t
following parts:
word / document.xml: the main part of the file
(content).
e _rels/rels.xml: file of the main relations.
* [Content_Types].xml: Types of files in the package

3.2. Environment configur ation

To read and write packages (files in OpenXML fonmnat
the SDK (Software Development Kit) OpenXML can be
used. Thus, two references should be added inrtjecgp
assembly or the solution, which are:

* Microsoft.Office.DocumentFormat.OpenXmil;

* WindowsBase.

However, the following assembly directives are also
required to compile the source code:

e DocumentFormat.OpenxXml;

e DocumentFormat.OpenXml.Packaging;

« DocumentFormat.OpenXml.Wordprocessing.

1 http://msdn.microsoft.com/en-us/library/office/cEB33.aspx
consulted on September 2013.

The SDK (Software Development Kit) provides a main

advantage in simplifying the access to differentgaf
OpenXML documents.

3.3. Filewriting

3.3.1. WordprocessingDocument Object Creation

In the Open XML SDK, the WordprocessingDocument

<w:r>
<w:rPr>
<w:rFonts w:ascii="Times"w:hansi="Tifinaghe-
IRCAM"/>
</w:rPr>
<w:t>Merci : </w:t>
<W:t>+0ICCLO+ </w:t>
</w:r>

class represents a Word document package. To caeate

Fig. 4: Example of rFont attributes

Word document, first a WordprocessingDocument class

instance need to be created and populated witk,ghen
the Create (String,

3.5. Search atext

WordprocessingDocumentType) openXML SDK allows looking for a text very simply.

contents are reloaded, according to the XML Streasn,

package is created the user can add parts to ed@iche
main document part, the AddMainDocumentPart() metho
of the WordprocessingDocument class is called. htavi

follow:

done that, the document structure and text coulatoled.

/I Create a document by supplying the filepath.
using (WordprocessingDocument wordDocument =
WordprocessingDocument.Create(filepath,
WordprocessingDocumentType.Document)){
// Add a main document part.
MainDocumentPart mainPart =
wordDocument.AddMainDocumentPart();
/I Create the document structure and add soxte te
mainPart.Document = new Document();
Body body = mainPart.Document.AppendChild(nev

=

Body());

using (WordprocessingDocument wdDoc =
WordprocessingDocument.Open(url, true)) {
const string wordmINamespace =
"http://schemas.openxmlformats.org/wordprocessi
ml/2006/main";
NameTable nt = new NameTable();
XmINamespaceManager nsManager = new
System.Xml.XmINamespaceManager(nt);
nsManager.AddNamespace("w", wordmINamesp4d
XmIDocument xdoc = new XmIDocument(nt);
XmIDocument xdocheader = new XmIDocument(nt
xdoc.Load(wdDoc.MainDocumentPart.GetStream(

g

ce);

~

Paragraph para = body.AppendChild(new
Paragraph());

Run run = para.AppendChild(new Run());
run.AppendChild(new Text{sICCLO+ "));

Fig. 5: XML Stream of document contents

Then, we can retrieve a document portion with ai§pe
font by using an XPath query as illustrated in €g.

Fig. 3: Sample code of WordprocessingDocument Qbje
Creation

3.3.2. WordProcessingM L Document Structure

The basic structure of a WordProcessingML documer
consists of the document and the body elemenpvieit

by one or more block level elements such as p, lwhic
represents a paragraph. This later contains omaooe r

elements. The r stands for run, which is a regibtext

XmiINodeList hiddenNodes =
xdoc.SelectNodes("//w:r/w:rPr/w:rFonts[@w:ascii=fo
ici')/../..;w:t", nsManager);//requete xpath

inti=0;
tstring font = "

foreach (System.Xml.XmINode hiddenNode in
hiddenNodes){
Console.WriteLine(hiddenNode.InnerText); }

with a common set of properties, such as formattihg
run includes one or more t elements that contaiange
of text.

3.4. Font structure

The following text from the ISO/IEC 29500 specitioa
can be useful when working with rFonts element.sThi

Fig. 6: Sample code for retrieving a specific font

3.6. Font change

To change the paragraph font that is stored irr Homts
properties of thepPr

element, represented by the

RunProperties class in Open XML SDK, the following

code is used:

element specifies the fonts which shall be usedigplay
the text contents of this run. Within a single rdmere
may be up to four types of attributes (ASCII, HBNSI,
Complex Script “cs”, East Asian). Each one of them
allows using a unique font.

Although it is in the same run, the contents ccaddin
different font faces by specifying a different fofdr
different attributes, as shown in fig. 4.

/I Open a Wordprocessing document for editing.
using (WordprocessingDocument package =
WordprocessingDocument.Open(fileName, true)) {
List<RunProperties> runProps =
package.MainDocumentPart.Document.Descendant
unProperties>().ToList();
foreach (RunProperties rp in runProps) {
if (rp.RunFonts.HighAnsi == "Tifinaghe-IRGA)}
rp.RunFonts = new RunFonts(){
ComplexScript="Tifinaghe-lrcam Unicd#e}
package.MainDocumentPart.Document.Save(); }

S<R

Fig. 7: Sample code for changing
WordprocessingDocument font

3.7. Header, footer and footnote change the file header, bottom, or footnotes nor preseéinecfile

To modify either a header, footer or a footnotet pira layout. Thus, we have opted to integrate the
document the WordprocessingML documentation advises¥WordprocessingML technology to deal with these
to delete the part than replace it by a new ongaining limitations.

the desired updates. However, this method doealloot))
keeping the part layout. To overcome this limitatizve ~ 4.1. Technical architecture
propose the new approach illustrated by fig. 8, andThe technical architecture of the desktop conveiser

structured as follow: _ based on the .Net technology and an implementatfon
* Get the specified part from MainDocumentPart the Model-View-Controller (MVC) pattern that allovis
object. separate application data model and user interaes

* Load the XML scheme of this part into an into different components.
XmIDocument instance.
e Search the specified text to update by using the4.2. Functional architecture

XPATH query. ; P .
. . As summarized in Fig. 9, the desktop converter ist®s
Replace the returned object by the desired text. of two processes: Transcoder and transliterator.

FootnotesParfbotnotesPart =
wdDoc.MainDocumentPart.FootnotesPart; s
——

* Save the XML scheme.

Converttextinreal
time

if (footnotesPart !=ull) {
Hashtabldiste_footnote -newHashtabl§);
IEnumerablgFootnote footnotes =
footnotesPart.Footnotes.Elemerfisotnote();
foreach(Footnotefootnotein footnotes)

Transcoder —
or

Transliterator

Download afile to
convert

{ “Retrieving document parts: header, -Converting each string
. . main part {content) and footer, according to the data stored
StringtxtXml = footnote.lnnerXmil; cutting It into strings (tag content w: t o in a collection (key, value),
byte] byteArray = in WordML structure) which will be loaded into the
EncodingBigEndianUnicode.GetBytes(txtXml); XM fles.
MemoryStreanstream =new ez
MemoryStreartbyteArray); @

xdocheader.Load(stream);

XmlINodeListfooterNodes =

xdocheader.SelectNodes("//w:r/w:n[@w:ascii="" +

font_sel + "/../../w:t", nsManager);
foreach(System.XmIXmINode hiddenNodein
footerNodes) {

Fig. 9: Amazigh converter architecture

4.2.1. Transcoder
This process allows shifting the ANSI representatid

try{ - : .
L .) Tifinaghe to Unicode representation for the cont@ha
ConsolewriteLine(hiddenNode1.InnerText); file in one of the following format: .txt, .rtf, at, and
...... . dOCX
}catch(Exceptlonc){ i _ In the case of a file conversion, based on the
Fig. 8: Sample code for changing WordprocessingML technology, the system detects the

WordprocessingDocument header, footer and footnote |,5aq fonts in this file. Then, converts all theiffaghe
. characters written on ANSI encoding that are defibg

4. Amazigh Converter the Amazigh ANSI fonts, such as Tarommit and
Through its existence, the Amazigh language hasvhno Tifinaghe-IRCAM, to Unicode.
different forms of writing: Latin supported by the
International Phonetic Alphabet, Arabic script, anseer s N .
Tifinaghe character based on ANSI and Unicod Fﬂﬂ Transcodage TIFINAGHE -IRCAM %
encoding. In the aim of allowing users to read atenin
a suitable form, and to save the Amazigh literatur
heritage in a standard unique form, a command-lir| ...
converter has been developed (Ataa Allah an
Boulaknadel, 2013). This tool ensures an automat
conversion from one form to another. However, is ha
some limitations such as do not having menu-drixed
graphical user interfaces, do not processing riekt t
format, and do not dealing with multilingual text,
especially when the Amazigh language is written b
ANSI encoding which makes the distinction betwee|
Tifinaghe script and other scripts relies on fonia
overcome these shortcomings a first version of sktde
converter based on the interob APl was developadalA Fig. 10: Transcoder interface for converting a file
Allah et al., 2013). However, this later could not process

Convettirfichier | Convertir texte | Aide

Copyright IRCAM - Version 2.0.0

In the case of converting the content of a texaatlee 5. Conclusion

transcoder enables a real time encoding conver3ibe. |y the aim to promote the Amazigh language and to

input content can be pasted or typed, and the bugu preserve its literary heritage, this paper haseptes a

be copied or saved into a text file. desktop converter based on the new WordprocessingML
) technology. This tool enables the Tifinaghe ANSI-

4.2.2. Trandliterator Unicode transcoding and the Arabic-Latin-Tifinaghe

The transliterator process aims to substitute ¢hiptsof a transliteration even in real time; and retain tite layout

text to another, while conserving the phonetic and the processing of all documents’ parts; paetity
pronunciation of its words. This process is based 0 headers, footers, and footnotes.

direct mapping between the pairs of scripts (Latin,

Tifinaghe Unicode) and (Arabic, Tifinaghe Unicodé). References

the Latin - Tifinaghe Unicode mapping the IRCAM . .

correspondences are used by default (Aneeak., 2004). Arréeur, '\I/lk EO%TJar’dIA" B?\ijr;”s'.':é EAOUKO(;JSSSZ '?:

While, the phonetic and Stroomer correspondences Hoﬁjnrir;;tibnélarlgen Sglgﬁaili ﬁZZII’RC.AI\/.I a;0040“'

(Stroomer, 2001) are also available. In the Arabic Ataé Allah. F. and Bgulaknadelg S"‘Conve’rtisseo.u

Tifinaghe Unicode mapping, there are more conshin la | o iahe - - ' b lati t'frml'rp

rules to use the IRCAM correspondences. These -2 'aNgué amazigne - script arabé - falin — tfmeg
The 2nd Symposium International sur le Traitement

constraints depend mainly on the cursiveness of the : .
; : o Automatique de la Culture Amazighe, SITACAM
Arabic language, the phonetic pronunciation, ardubse 2011, 6-7 May 2011, Agadir, Morocco, 2011,

of Amazigh and Arabic vowels. Thus, some Arabic - @taa Allah, F. and Boulaknadel S “Toward

Tifinaghe correspondences have been adapted, an) . ‘
orthographic rules have been specified mainly om th ~computational processing of less resourced language
Primarily experiments for Moroccan Amazigh

transliteration from Arabic script into Tifinaghe® (for .o S L
more details, the reader can consult (Ataa Allald an language”, in Text Mining. Rijeka: InTech, pp. 197-
218, november 2012.

Boulaknadel, 2012)). Ataa Allah, F., Frain, J. and Ait Ouguengay, Y «

ey TRAGE B — - Amazigh Language Desktop Converter », Actes du

Q Iranslitiérateur : Arabe-Latin-Tifinaghe ;:;g 3éme S_ymposium Internationall sur Ie_ Traite_ment

T Automatique de la Culture Amazighe, qui a eu lieu a
e | [[|Gt e~ i R Beni Mellal le 2-4 May 2013.

Hachid, M. “Les premiers berbéres”, Entre Méditaém,
Tassili et Nili. Aix-en-Provence-Alger : Edisud-iha
Yas, 2000.

Moukhlis, M. and Ouniam, L. Bulletind’informationed

- I'Institut Royal de la Culture Amazighe, n° 5&6,nki

Totohonsitics TEEZOT - 2006.

Skounti, A., Lemijidi, A. and Nami, E. M. Tirra aux
origines de I'écriture au Maroc, IRCAM, 2003.

Stroomer, H. Textes berbéres des Guedmioua et
Goundafa (Haut Atlas, Maroc), basés sur les
documents de F. Corjon, J.-M. Franchi et J. Eugeéne,
Edisud, 2001.

Texte originel tanammirt] e

Copyright IRCAM - Veersion 1.0.1

Fig. 11: Transliterator interface

Furthermore, the tool enables the user to set dris/h
proper correspondence mapping table that couldabeds
for another reuse (cf. Fig. 12). Once the new mappi
table is saved, it will appear in the dropdown list

Translittérateur TIFINAGHE - -— =]
ka2 "t
-\, Iransiitierateur : Arabe—Laun—linnagne g@i_g

[Aide | Table 1

[Arabe Tifinaghe

3 x

| Latin Tifinaghe. “] Enregistrer]

TS 5] 5 v e e e

o [for [on v
B

= 2

Copyright IRCAM - Version 1.0.1

Fig. 12: Correspondence setting layout

