
Amazigh Converter based on WordprocessingML

Fadoua Ataa Allah Jamal Frain

CEISIC, IRCAM, Morocco
{ataaallah, frain}@ ircam.ma

Abstract
Since the creation of the Royal Institute of Amazigh Culture, the Amazigh language is undergoing a process of standardization and
integration into information and communication technologies. This process is passing through several stages, after the writing system
stabilization, the encoding stage and the development of appropriate standards for the keyboard layout; the stage of computational
linguistics is undertaking. Thus, in the aim to save the Amazigh cultural heritage, many converters, allowing the Tifinaghe ANSI-
Unicode transition and Arabic-Latin-Tifinaghe transliteration, have been developed. However, these converters could not assure the
file layout and the processing of all documents’ parts. To overcome these limitations, the new WordprocessingML technology has
been used.

Keywords: Amazigh language, transcoding, transliteration, WordprocessingML technology, ANSI, Unicode, Tifinaghe,
Arabic and Latin scripts.

1. Introduction
The integration of the Amazigh language in Information
Technology and Communication (ICT) has become a
necessity to promote the Amazigh language. However,
this integration was confronted by several challenges,
including those related to standardization and language
planning.

To let the Amazigh language supporting and conveying
knowledge, firstly, a writing form and an alphabetic
system have been established. Secondly, based on a
linguistic description of the most widely spoken varieties
of the Amazigh language, a spelling system has been
stabilized (Ameur et al., 2004). Then, a stage of character
encoding has been undertaken. However, the difficulty in
these steps is to achieve generic solutions in limited time
to allow the integration of Amazigh into the Moroccan
educational system in 2003. Thus, the native Amazigh
writing system encoding went through two steps: ANSI
then Unicode encoding (Moukhlis and Ouniam, 2006).

Promoting Amazigh culture involves the maintenance
and preservation of literary heritage and the
dissemination of writing Tifinaghe on all media. To this
end, Amazigh converters have been developed:
• A command line transcoder for ANSI-Unicode

encodage and an Arabic-Latin-Tifinaghe
transliterator, providing only the treatment of .txt
files (Ataa Allah and Boulaknadel, 2011).

• A transcoder and transliterator with graphical
interfaces based on interob API for processing the
files .txt, .rtf, .doc and .docx (Ataa Allah et al.,
2013).

However, all these converters have known technical
limitations that can be summarized in the following
points:
• Complexity of an automatic identification of the used

fonts, which is necessary required for transcoding
Tifinaghe script from ANSI to Unicode, especially in
multilingual documents.

• Simple search without combination of free content
criteria.

• The loss of the document format.

• The difficulty of processing headers, footers,
footnotes at the bottom of pages.

• Crash or slow processing of long files.
To overcome these limitations, we have decided to

develop a new converter based on WordProcessingML
technology that will handle files particularly Word format
in more efficient and simpler way than interob API
technology. Furthermore, we propose new code for
processing files’ header, footer and footnote.

The remainder of this paper consists of four sections. In
Section 2, we present a historical overview and the
writing systems of the Amazigh language. Then, we
introduce, in Section 3, the WordprocessingML
technology, especially the needed structures. Finally,
before to conclude in Section 5, we describe, in Section 4,
the elaborated tool.

2. Amazigh language

2.1. Amazigh language history
Amazigh is the native language of North Africa. It is also
known by the name of "Berber" and the local name
"Tamazight". This language is present from Morocco to
Egypt passing through Algeria, Tunisia, Niger and Mali.
It is spoken by tens of millions of people as non-
standardized dialects.

In Morocco, there are three main varieties of the
Amazigh language: Tarifite in the North; Tamazight in
the Center, the Middle Atlas and a part of High Atlas; and
Tachelhite in the South, South-west of High Atlas, the
Anti-Atlas and Sous. These varieties were primarily
employed in oral communication. However, in order to
preserve the Amazigh language, it is important to transit
from orality to literacy and to upgrade the language, then
to integrate the Amazigh language into the information
and communication technologies.

Although the Amazigh language was primarily an oral
tradition, the Amazigh language has, since antiquity, its
own writing system called "Libyco-Berber" (Tifinaghe in
Amazigh). This system dates back more than 40 centuries
(Hachid, 2000; Skounti et al., 2003). However, the
appearance form of its signs has been undergoing many

modifications: since its inception "the Libyan" to the neo-
Tifinaghe in the late sixties and Tifinaghe IRCAM-in
2001 (Ameur et al., 2004).

2.2. Tifinaghe-IRCAM graphical system
Since February, 11th, 2003, Tifinaghe-IRCAM has
become the official graphic system for writing Amazigh in
Morocco (Ameur et al., 2004). This system contains:

• 27 consonants including: ⴱ, ⴳ, ⴳⵯ, ⴷ, ⴹ, ⴼ, ⴽ, ⴽⵯ,
ⵀ, ⵃ, ⵄ, ⵅ, ⵇ, ⵊ, ⵍ, ⵎ, ⵏ, ⵔ, ⵕ, ⵖ, ⵙ, ⵚ, ⵛ, ⵜ,
ⵟ, ⵣ, ⵥ;

• 2 semi-consonants: ⵢ and ⵡ;
• 4 vowels: three full vowels ⴰ, ⵉ, ⵓ and neutral vowel

(or schwa) ⴻ which has a rather special status in
Amazigh phonology.

No particular punctuation is known for Tifinaghe.
IRCAM has recommended the use of the international
symbols.

2.3. Amazigh encoding
To allow the Amazigh people to communicate in their
own language and follow at the same time the
technological evolution, it is necessary to ensure a wide
diffusion and a linguistic analysis of digital document
content. Thus, a digital transcription system has been
created, and several efforts have been undertaken to
encode Tifinaghe in Unicode/ISO 106461 (Moukhlis and
Ouniam, 2006). Nevertheless, this process has taken a
long time than what the integration of the Amazigh
language into the Moroccan education system was
allowed. To resolve this problem, the ANSI encoding
supported by fonts has been used (for more details about
Tifinaghe ANSI and Unicode encoding the reader can
refer to (Ataa Allah et al., 2013).

3. WordprocessingML
Unlike its predecessors, the highly anticipated Microsoft
Office 2007document format ‘OpenXML’, is a fully open
standard. It is based on open specifications and uses open
standards like ZIP, XML, XMLSchema, PNG, ..., which
make it particularly interesting for developers since these
standards are supported by most technologies such as
.NET, Java, PHP, and C. Moreover, OpenXML adopts the
separation concept of content and presentation: each kind
of data (text, image, multimedia, etc.) is stored
independently of the styles and presentation information.

 Fig. 1: Open XML specification

Furthermore based on WordprocessingML and XML
technologies, Word file creation and manipulation became

easier and do not require the use of Interop, which means
that the user does not need to install the Word software to
manipulate the document.

In the remaining of this section, we describe the
WordML document structure, and explain the operations
of reading, writing and updating a Word document1.

 3.1. Presentation
The introduction of XML was marked as a native format
of Word documents. Any Word document can be opened
in Word and saved as XML. This new format, called
WordML, offers many opportunities to generate and
process Word documents through the WordprocessingML
markup.

The WordML package has the form of a zip archive
containing a collection of compressed files, where each
file is a part of the package. To display their contents, the
.docx files can be renamed by .zip, or use Zip utility to
open them.

 Fig. 2: WordprocessingML structure

To be effectual, a document must contain at least the
following parts:
• word / document.xml: the main part of the file

(content).
• _rels / rels.xml: file of the main relations.
• [Content_Types].xml: Types of files in the package.

3.2. Environment configuration
To read and write packages (files in OpenXML format),
the SDK (Software Development Kit) OpenXML can be
used. Thus, two references should be added in the project
assembly or the solution, which are:
• Microsoft.Office.DocumentFormat.OpenXml;
• WindowsBase.
However, the following assembly directives are also
required to compile the source code:
• DocumentFormat.OpenXml;
• DocumentFormat.OpenXml.Packaging;
• DocumentFormat.OpenXml.Wordprocessing.

1 http://msdn.microsoft.com/en-us/library/office/cc850833.aspx,
consulted on September 2013.

The SDK (Software Development Kit) provides a main
advantage in simplifying the access to different parts of
OpenXML documents.

3.3. File writing

3.3.1. WordprocessingDocument Object Creation
 In the Open XML SDK, the WordprocessingDocument
class represents a Word document package. To create a
Word document, first a WordprocessingDocument class
instance need to be created and populated with parts, then
the Create (String, WordprocessingDocumentType)
method should be called. Once, the Word document
package is created the user can add parts to it. To add the
main document part, the AddMainDocumentPart() method
of the WordprocessingDocument class is called. Having
done that, the document structure and text could be added.

// Create a document by supplying the filepath.
using (WordprocessingDocument wordDocument =
WordprocessingDocument.Create(filepath,
WordprocessingDocumentType.Document)){
 // Add a main document part.
 MainDocumentPart mainPart =

wordDocument.AddMainDocumentPart();
 // Create the document structure and add some text.
 mainPart.Document = new Document();
 Body body = mainPart.Document.AppendChild(new

Body());
 Paragraph para = body.AppendChild(new

Paragraph());
 Run run = para.AppendChild(new Run());
 run.AppendChild(new Text("ⵜⴰⵏⵎⵎⵉⵔⵜ "));
}
Fig. 3: Sample code of WordprocessingDocument Object

Creation

3.3.2. WordProcessingML Document Structure
The basic structure of a WordProcessingML document
consists of the document and the body element, followed
by one or more block level elements such as p, which
represents a paragraph. This later contains one or more r
elements. The r stands for run, which is a region of text
with a common set of properties, such as formatting. A
run includes one or more t elements that contain a range
of text.

3.4. Font structure
The following text from the ISO/IEC 29500 specification
can be useful when working with rFonts element. This
element specifies the fonts which shall be used to display
the text contents of this run. Within a single run, there
may be up to four types of attributes (ASCII, High ANSI,
Complex Script “cs”, East Asian). Each one of them
allows using a unique font.

Although it is in the same run, the contents could be in
different font faces by specifying a different font for
different attributes, as shown in fig. 4.

<w:r>
 <w:rPr>
 <w:rFonts w:ascii="Times"w:hansi="Tifinaghe-

IRCAM"/>
 </w:rPr>
 <w:t> Merci : </w:t>
 <w:t> tanmmirt </w:t>
</w:r>

Fig. 4: Example of rFont attributes

3.5. Search a text
OpenXML SDK allows looking for a text very simply.
Once the package (docx file) is opened, the document
contents are reloaded, according to the XML Stream, as
follow:

using (WordprocessingDocument wdDoc =
WordprocessingDocument.Open(url, true)) {
 const string wordmlNamespace =

"http://schemas.openxmlformats.org/wordprocessing
ml/2006/main";

 NameTable nt = new NameTable();
 XmlNamespaceManager nsManager = new

System.Xml.XmlNamespaceManager(nt);
 nsManager.AddNamespace("w", wordmlNamespace);
 XmlDocument xdoc = new XmlDocument(nt);
 XmlDocument xdocheader = new XmlDocument(nt);
 xdoc.Load(wdDoc.MainDocumentPart.GetStream());

Fig. 5: XML Stream of document contents

Then, we can retrieve a document portion with a specific
font by using an XPath query as illustrated in fig. 6.

XmlNodeList hiddenNodes =
xdoc.SelectNodes("//w:r/w:rPr/w:rFonts[@w:ascii='Font
ici']/../../w:t", nsManager);//requete xpath
int i = 0;
string font = "";
foreach (System.Xml.XmlNode hiddenNode in
hiddenNodes){
 Console.WriteLine(hiddenNode.InnerText); }

Fig. 6: Sample code for retrieving a specific font

3.6. Font change
To change the paragraph font that is stored in the rFonts
properties of the pPr element, represented by the
RunProperties class in Open XML SDK, the following
code is used:

// Open a Wordprocessing document for editing.
 using (WordprocessingDocument package =
WordprocessingDocument.Open(fileName, true)) {
 List<RunProperties> runProps =

package.MainDocumentPart.Document.Descendants<R
unProperties>().ToList();

 foreach (RunProperties rp in runProps) {
 if (rp.RunFonts.HighAnsi == "Tifinaghe-IRCAM"){

 rp.RunFonts = new RunFonts(){
 ComplexScript="Tifinaghe-Ircam Unicode"}; }}
 package.MainDocumentPart.Document.Save(); }

Fig. 7: Sample code for changing
WordprocessingDocument font

3.7. Header, footer and footnote change
To modify either a header, footer or a footnote part of a
document the WordprocessingML documentation advises
to delete the part than replace it by a new one containing
the desired updates. However, this method does not allow
keeping the part layout. To overcome this limitation, we
propose the new approach illustrated by fig. 8, and
structured as follow:

• Get the specified part from MainDocumentPart
object.

• Load the XML scheme of this part into an
XmlDocument instance.

• Search the specified text to update by using the
XPATH query.

• Replace the returned object by the desired text.
• Save the XML scheme.

FootnotesPart footnotesPart =
wdDoc.MainDocumentPart.FootnotesPart;
 if (footnotesPart != null) {
 Hashtable liste_footnote = new Hashtable();

IEnumerable<Footnote> footnotes =
footnotesPart.Footnotes.Elements<Footnote>();

 foreach (Footnote footnote in footnotes)
 {
 String txtXml = footnote.InnerXml;

 byte[] byteArray =
Encoding.BigEndianUnicode.GetBytes(txtXml);
MemoryStream stream = new
MemoryStream(byteArray);

 xdocheader.Load(stream);
XmlNodeList footerNodes =
xdocheader.SelectNodes("//w:r/w:n[@w:ascii='" +
font_sel + "']/../../w:t", nsManager);

foreach (System.Xml.XmlNode hiddenNode1 in
footerNodes) {
try{
Console.WriteLine(hiddenNode1.InnerText);
……
} catch (Exception c){ }}}

Fig. 8: Sample code for changing
WordprocessingDocument header, footer and footnote

4. Amazigh Converter
Through its existence, the Amazigh language has known
different forms of writing: Latin supported by the
International Phonetic Alphabet, Arabic script, and
Tifinaghe character based on ANSI and Unicode
encoding. In the aim of allowing users to read or write in
a suitable form, and to save the Amazigh literature
heritage in a standard unique form, a command-line
converter has been developed (Ataa Allah and
Boulaknadel, 2013). This tool ensures an automatic
conversion from one form to another. However, it has
some limitations such as do not having menu-driven and
graphical user interfaces, do not processing rich text
format, and do not dealing with multilingual text,
especially when the Amazigh language is written by
ANSI encoding which makes the distinction between
Tifinaghe script and other scripts relies on fonts. To
overcome these shortcomings a first version of a desktop
converter based on the interob API was developed (Ataa
Allah et al., 2013). However, this later could not process

the file header, bottom, or footnotes nor preserve the file
layout. Thus, we have opted to integrate the
WordprocessingML technology to deal with these
limitations.

4.1. Technical architecture
The technical architecture of the desktop converter is
based on the .Net technology and an implementation of
the Model-View-Controller (MVC) pattern that allows to
separate application data model and user interface views
into different components.

4.2. Functional architecture
As summarized in Fig. 9, the desktop converter consists
of two processes: Transcoder and transliterator.

Fig. 9: Amazigh converter architecture

4.2.1. Transcoder
This process allows shifting the ANSI representation of
Tifinaghe to Unicode representation for the content of a
file in one of the following format: .txt, .rtf, .doc, and
.docx.

In the case of a file conversion, based on the
WordprocessingML technology, the system detects the
used fonts in this file. Then, converts all the Tifinaghe
characters written on ANSI encoding that are defined by
the Amazigh ANSI fonts, such as Tarommit and
Tifinaghe-IRCAM, to Unicode.

Fig. 10: Transcoder interface for converting a file

In the case of converting the content of a text area, the
transcoder enables a real time encoding conversion. The
input content can be pasted or typed, and the output can
be copied or saved into a text file.

4.2.2. Transliterator
The transliterator process aims to substitute the script of a
text to another, while conserving the phonetic
pronunciation of its words. This process is based on
direct mapping between the pairs of scripts (Latin,
Tifinaghe Unicode) and (Arabic, Tifinaghe Unicode). In
the Latin - Tifinaghe Unicode mapping the IRCAM
correspondences are used by default (Ameur et al., 2004).
While, the phonetic and Stroomer correspondences
(Stroomer, 2001) are also available. In the Arabic -
Tifinaghe Unicode mapping, there are more constrained
rules to use the IRCAM correspondences. These
constraints depend mainly on the cursiveness of the
Arabic language, the phonetic pronunciation, and the use
of Amazigh and Arabic vowels. Thus, some Arabic -
Tifinaghe correspondences have been adapted, and
orthographic rules have been specified mainly on the
transliteration from Arabic script into Tifinaghe one (for
more details, the reader can consult (Ataa Allah and
Boulaknadel, 2012)).

Fig. 11: Transliterator interface

Furthermore, the tool enables the user to set his/her

proper correspondence mapping table that could be saved
for another reuse (cf. Fig. 12). Once the new mapping
table is saved, it will appear in the dropdown list.

Fig. 12: Correspondence setting layout

5. Conclusion
In the aim to promote the Amazigh language and to
preserve its literary heritage, this paper has presented a
desktop converter based on the new WordprocessingML
technology. This tool enables the Tifinaghe ANSI-
Unicode transcoding and the Arabic-Latin-Tifinaghe
transliteration even in real time; and retain the file layout
and the processing of all documents’ parts; particularly
headers, footers, and footnotes.

References
Ameur, M., Bouhjar, A., Boukhris, F., Boukouss, A.,

Boumalk, A., Elmedlaoui, M., Iazzi, E. M. and Souifi,
H. Initiation à la langue amazighe, IRCAM, 2004.

Ataa Allah, F. and Boulaknadel, S. “Convertisseur pour
la langue amazighe : script arabe - latin – tifinaghe”,
The 2nd Symposium International sur le Traitement
Automatique de la Culture Amazighe, SITACAM
2011, 6-7 May 2011, Agadir, Morocco, 2011.

Ataa Allah, F. and Boulaknadel, S “Toward
computational processing of less resourced languages:
Primarily experiments for Moroccan Amazigh
language”, in Text Mining. Rijeka: InTech, pp. 197-
218, november 2012.

Ataa Allah, F., Frain, J. and Ait Ouguengay, Y «
Amazigh Language Desktop Converter », Actes du
3ème Symposium International sur le Traitement
Automatique de la Culture Amazighe, qui a eu lieu à
Beni Mellal le 2-4 May 2013.

Hachid, M. “Les premiers berbères”, Entre Méditérranée,
Tassili et Nili. Aix-en-Provence-Alger : Edisud-Ina-
Yas, 2000.

Moukhlis, M. and Ouniam, L. Bulletind’information de
l’Institut Royal de la Culture Amazighe, n° 5&6, June
2006.

Skounti, A., Lemjidi, A. and Nami, E. M. Tirra aux
origines de l’écriture au Maroc, IRCAM, 2003.

Stroomer, H. Textes berbères des Guedmioua et
Goundafa (Haut Atlas, Maroc), basés sur les
documents de F. Corjon, J.-M. Franchi et J. Eugène,
Edisud, 2001.

